Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(13)2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37447906

RESUMO

Assistive robots are tools that people living with upper body disabilities can leverage to autonomously perform Activities of Daily Living (ADL). Unfortunately, conventional control methods still rely on low-dimensional, easy-to-implement interfaces such as joysticks that tend to be unintuitive and cumbersome to use. In contrast, vocal commands may represent a viable and intuitive alternative. This work represents an important step toward providing a viable vocal interface for people living with upper limb disabilities by proposing a novel lightweight vocal command recognition system. The proposed model leverages the MobileNet2 architecture, augmenting it with a novel approach to the self-attention mechanism, achieving a new state-of-the-art performance for Keyword Spotting (KWS) on the Google Speech Commands Dataset (GSCD). Moreover, this work presents a new dataset, referred to as the French Speech Commands Dataset (FSCD), comprising 4963 vocal command utterances. Using the GSCD as the source, we used Transfer Learning (TL) to adapt the model to this cross-language task. TL has been shown to significantly improve the model performance on the FSCD. The viability of the proposed approach is further demonstrated through real-life control of a robotic arm by four healthy participants using both the proposed vocal interface and a joystick.


Assuntos
Robótica , Tecnologia Assistiva , Percepção da Fala , Humanos , Fala , Atividades Cotidianas
2.
Artigo em Inglês | MEDLINE | ID: mdl-32120263

RESUMO

5-lipoxygenase (5-LO), coded by the ALOX5 gene, is expressed in leukocytes and catalyzes the formation of leukotrienes, pro-inflammatory lipid mediators. Leukotrienes are central to immune responses, but are also involved in inflammatory disorders and 5-LO expression is associated with leukemia stem cell survival. It is therefore important to understand mechanisms that control 5-LO expression. This study investigated the control of 5-LO expression and leukotriene biosynthesis following the maturation of human monocytic cells. MonoMac-1 (MM1) and THP-1 cells were incubated for up to 72 h with or without LPS and TGF-ß. LPS, but not TGF-ß, increased CD14 expression in both MM1 and THP-1 cells. Incubation with LPS (100 ng/ml) and TGF-ß (1 ng/ml) synergistically increased the capacity of MM1 cells to produce 5-LO products from undetectable levels to 40±5 pmol/106 cells. 5-LO product biosynthesis in THP-1 cells increased 25-fold. A synergistic effect of LPS and TGF-ß was measured with increases in 5-LO mRNA of 54- and 13-fold in MM1 and THP-1 cells, respectively. 5-LO protein expression increased significantly in both MM1 and THP-1 cells. ALOX5 promoter activity was significantly elevated >2-fold in both cell lines following LPS treatment, but TGF-ß was without effect. The main 5-LO products were cysteinyl-leukotrienes, however LPS and TGF-ß did not impact on the capacity of the cells to metabolize leukotriene A4. Overall, this study demonstrates that receptor-mediated stimulation of MM1 and THP-1 cells by LPS is associated with increased 5-LO expression. This represents a new mechanism by which leukotriene biosynthesis can be modulated by pathological agents.


Assuntos
Araquidonato 5-Lipoxigenase/genética , Araquidonato 5-Lipoxigenase/metabolismo , Lipopolissacarídeos/farmacologia , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Sinergismo Farmacológico , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Regiões Promotoras Genéticas/efeitos dos fármacos , Células THP-1 , Fator de Crescimento Transformador beta1/farmacologia
3.
Pharmacol Res Perspect ; 7(5): e00524, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31523435

RESUMO

5-lipoxygenase (5-LO) catalyzes the biosynthesis of leukotrienes, potent lipid mediators involved in inflammatory diseases, and both 5-LO and the leukotrienes are validated therapeutic targets. Caffeic acid phenethyl ester (CAPE) is an effective inhibitor of 5-LO and leukotriene biosynthesis but is susceptible to hydrolysis by esterases. In this study a number of CAPE analogues were synthesized with modifications to the caffeoyl moiety and the replacement of the ester linkage with a ketone. Several new molecules showed better inhibition of leukotriene biosynthesis than CAPE in isolated human neutrophils and in whole blood with IC50 values in the nanomolar (290-520 nmol/L) and low micromolar (1.0-2.3 µmol/L) ranges, respectively. Sinapic acid and 2,5-dihydroxy derivatives were more stable than CAPE in whole blood, and ketone analogues were degraded more slowly in HepaRG hepatocyte cultures than esters. All compounds underwent modification consistent with glucuronidation in HepaRG cultures as determined using LC-MS/MS analysis, though the modified sinapoyl ketone (10) retained 50% of its inhibitory activity after up to one hour of incubation. This study has identified at least one CAPE analogue, compound 10, that shows favorable properties that warrant further in vivo investigation as an antiinflammatory compound.


Assuntos
Araquidonato 5-Lipoxigenase/metabolismo , Hidroxibenzoatos/síntese química , Cetonas/síntese química , Inibidores de Lipoxigenase/síntese química , Análise Química do Sangue , Ácidos Cafeicos/química , Linhagem Celular , Estabilidade de Medicamentos , Ésteres/química , Células HEK293 , Humanos , Hidroxibenzoatos/química , Hidroxibenzoatos/farmacologia , Concentração Inibidora 50 , Cetonas/química , Cetonas/farmacologia , Inibidores de Lipoxigenase/química , Inibidores de Lipoxigenase/farmacologia , Simulação de Acoplamento Molecular , Neutrófilos/química , Álcool Feniletílico/análogos & derivados , Álcool Feniletílico/química
4.
IEEE Int Conf Rehabil Robot ; 2019: 46-52, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31374605

RESUMO

This paper presents a voice control interface prototype for assistive robots aiming to help people living with upper limb disabilities to perform daily activities autonomously. Assistive robotic devices can be used to help people with upper-body disabilities gain more autonomy in their daily life. However, it is very difficult or even impossible for certain users to control the robot with conventional control systems (e.g. joystick, sip-and-puff). This paper presents the design and preliminary evaluation of a voice command system prototype for the control of assistive robotic arms' movements. This work aims at making the control of assistive robots more intuitive and fluid, and to perform various tasks in less time and with a lesser effort. The prototype of the voice command interface developed is first presented, followed by two experiments with five able-bodied subjects in order to assess the system's performance and guide future development.


Assuntos
Pessoas com Deficiência/reabilitação , Robótica/instrumentação , Atividades Cotidianas , Algoritmos , Desenho de Equipamento , Humanos , Tecnologia Assistiva , Extremidade Superior , Interface Usuário-Computador
5.
J Leukoc Biol ; 105(6): 1131-1142, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30676680

RESUMO

Leukotriene B4 (LTB4 ) plays a prominent role in innate immunity as it induces phagocyte recruitment, the release of antimicrobial effectors, and as it potentiates the ingestion and killing of pathogens. In humans, LTB4 has a short half-life and is rapidly metabolized by leukocytes, notably into 20-OH- and 20-COOH-LTB4 by neutrophils. Although these LTB4 metabolites bind to the BLT1 receptor with high affinity, they activate neutrophils to a much lower extent than LTB4 . We thus postulated that LTB4 metabolites could dampen BLT1 -mediated responses, therefore limiting the impact of LTB4 on human neutrophil functions. We found that 20-OH-LTB4 and 20-COOH-LTB4 inhibited all of the LTB4 -mediated neutrophil responses we tested (migration, degranulation, leukotriene biosynthesis). The potencies of the different compounds at inhibiting LTB4 -mediated responses were 20-OH-LTB4  = CP 105,696 (BLT1 antagonist) > > 20-COOH-LTB4 ≥ resolvin E1 (RVE1 ). In contrast, the fMLP- and IL-8-mediated responses we tested were not affected by the LTB4 metabolites or RVE1 . 20-OH-LTB4 and 20-COOH-LTB4 also inhibited the LTB4 -mediated migration of human eosinophils but not that induced by 5-KETE. Moreover, using 20-COOH-LTB4 , LTB4 , and LTB4 -alkyne, we show that LTB4 is a chemotactic, rather than a chemokinetic factor for both human neutrophils and eosinophils. In conclusion, our data indicate that LTB4 metabolites and RVE1 act as natural inhibitors of LTB4 -mediated responses. Thus, preventing LTB4 ω-oxidation might result in increased innate immunity and granulocyte functions.


Assuntos
Eosinófilos/imunologia , Leucotrieno B4/imunologia , Neutrófilos/imunologia , Receptores do Leucotrieno B4/imunologia , Ácidos Araquidônicos/farmacologia , Benzopiranos/farmacologia , Ácidos Carboxílicos/farmacologia , Ácido Eicosapentaenoico/análogos & derivados , Ácido Eicosapentaenoico/farmacologia , Eosinófilos/citologia , Humanos , Leucotrieno B4/farmacologia , Neutrófilos/citologia , Receptores do Leucotrieno B4/antagonistas & inibidores
6.
Mol Pharmacol ; 95(1): 139-150, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30404890

RESUMO

The inflammatory response is necessary for the host's defense against pathogens; however, uncontrolled or unregulated production of eicosanoids has been associated with several types of chronic inflammatory diseases. Thus, it is not surprising that enzymes implicated in the production of eicosanoids have been strategically targeted for potential therapeutic approaches. The 12(S)-hydroxyeicosatetraenoic acid [12(S)-HETE] lipid mediator is among inflammatory molecules that are abundantly produced in various diseases and is primarily biosynthesized via the 12(S)-lipoxygenase pathway. The effects of the abundance of 12(S)-HETE and its contribution to several chronic inflammatory diseases have been well studied over the last few years. While most developed compounds primarily target the 5-lipoxygenase (5-LO) or the cyclooxygenase (COX) pathways, very few compounds selectively inhibiting the 12-lipoxygenase (12-LO) pathway are known. In this study, we examined whether the distribution of hydroxyl groups among flavones could influence their potency as 12-LO inhibitors. Using human platelets, the human embryonic kidney 293 (HEK293) cell line expressing 5-LO, and human polymorphonuclear leukocytes (PMNLs) we investigated the effects of these compounds on several inflammatory pathways, namely, 12-LO, 5-LO, and COX. Using high-resolution respirometry and flow cytometry, we also evaluated some normal cell functions that could be modulated by our compounds. We identified a peracetylated quercetin (compound 6) that exerts potent inhibitory activity toward the platelet 12-LO pathway (IC50 = 1.53 µM) while having a lesser affinity toward the COX pathway. This study characterizes the peracetylated quercetin (compound 6) as a more selective platelet-type 12-LO inhibitor than baicalein, with no measurable nontargeted effects on the platelet's activation or overall cell's oxygen consumption.


Assuntos
Plaquetas/efeitos dos fármacos , Inibidores de Lipoxigenase/farmacologia , Inibidores da Agregação Plaquetária/farmacologia , Quercetina/farmacologia , Araquidonato 5-Lipoxigenase/metabolismo , Plaquetas/metabolismo , Linhagem Celular , Eicosanoides/metabolismo , Flavanonas/farmacologia , Células HEK293 , Humanos , Ácidos Hidroxieicosatetraenoicos/farmacologia
7.
J Lipid Res ; 57(10): 1821-1830, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27538823

RESUMO

Alkyne and azide analogs of natural compounds that can be coupled to sensitive tags by click chemistry are powerful tools to study biological processes. Arachidonic acid (AA) is a FA precursor to biologically active compounds. 19-Alkyne-AA (AA-alk) is a sensitive clickable AA analog; however, its use as a surrogate to study AA metabolism requires further evaluation. In this study, AA-alk metabolism was compared with that of AA in human cells. Jurkat cell uptake of AA was 2-fold greater than that of AA-alk, but significantly more AA-Alk was elongated to 22:4. AA and AA-alk incorporation into and remodeling between phospholipid (PL) classes was identical indicating equivalent CoA-independent AA-PL remodeling. Platelets stimulated in the pre-sence of AA-alk synthesized significantly less 12-lipoxygenase (12-LOX) and cyclooxygenase products than in the presence of AA. Ionophore-stimulated neutrophils produced significantly more 5-LOX products in the presence of AA-alk than AA. Neutrophils stimulated with only exogenous AA-alk produced significantly less 5-LOX products compared with AA, and leukotriene B4 (LTB4)-alk was 12-fold less potent at stimulating neutrophil migration than LTB4, collectively indicative of weaker leukotriene B4 receptor 1 agonist activity of LTB4-alk. Overall, these results suggest that the use of AA-alk as a surrogate for the study of AA metabolism should be carried out with caution.


Assuntos
Araquidonato 12-Lipoxigenase/metabolismo , Araquidonato 5-Lipoxigenase/metabolismo , Ácidos Araquidônicos , Química Click , Neutrófilos/metabolismo , Fosfolipídeos/metabolismo , Ácidos Araquidônicos/síntese química , Ácidos Araquidônicos/farmacocinética , Ácidos Araquidônicos/farmacologia , Humanos , Células Jurkat , Neutrófilos/citologia
8.
Int J Med Chem ; 2014: 931756, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25383225

RESUMO

5-Lipoxygenase (5-LO) is the key enzyme responsible for the conversion of arachidonic acid to leukotrienes, a class of lipid mediators implicated in inflammatory disorders. In this paper, we describe the design, synthesis, and preliminary activity studies of novel clicked caffeic esters and amides as radical scavengers and 5-LO inhibitors. From known 5-LO inhibitor 3 as a lead, cinnamic esters 8a-h and amides 9a-h as well as caffeic esters 15a-h and amides 16a-h were synthesized by Cu(I)-catalyzed [1,3]-dipolar cycloaddition with the appropriate azide precursors and terminal alkynes. All caffeic analogs are proved to be good radical scavengers (IC50: 10-20 µM). Esters 15g and 15f possessed excellent 5-LO inhibition activity in HEK293 cells and were equipotent with the known 5-LO inhibitor CAPE and more potent than Zileuton. Several synthesized esters possess activities rivaling Zileuton in stimulated human polymorphonuclear leukocytes.

9.
J Leukoc Biol ; 93(2): 267-76, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23242611

RESUMO

The endocannabinoid 2-AG is highly susceptible to its hydrolysis into AA, which activates neutrophils through de novo LTB(4) biosynthesis, independently of CB activation. In this study, we show that 2-AG and AA stimulate neutrophils to release antimicrobial effectors. Supernatants of neutrophils activated with nanomolar concentrations of 2-AG and AA indeed inhibited the infectivity of HSV-1 and RSV. Additionally, the supernatants of 2-AG- and AA-stimulated neutrophils strongly impaired the growth of Escherichia coli and Staphylococcus aureus. This correlated with the release of a large amount (micrograms) of α-defensins, as well as a limited amount (nanograms) of LL-37. All the effects of AA and 2-AG mentioned above were prevented by inhibiting LTB(4) biosynthesis or by blocking BLT(1). Importantly, neither CB(2) receptor agonists nor antagonists could mimic nor prevent the effects of 2-AG, respectively. In fact, qPCR data show that contaminating eosinophils express ∼100-fold more CB(2) receptor mRNA than purified neutrophils, suggesting that CB(2) receptor expression by human neutrophils is limited and that contaminating eosinophils are likely responsible for the previously documented CB(2) expression by freshly isolated human neutrophils. The rapid conversion of 2-AG to AA and their subsequent metabolism into LTB(4) promote 2-AG and AA as multifunctional activators of neutrophils, mainly exerting their effects by activating the BLT(1). Considering that nanomolar concentrations of AA or 2-AG were sufficient to impair viral infectivity, this suggests potential physiological roles for 2-AG and AA as regulators of host defense in vivo.


Assuntos
Anti-Infecciosos/metabolismo , Ácido Araquidônico/imunologia , Ácidos Araquidônicos/imunologia , Endocanabinoides/imunologia , Escherichia coli/imunologia , Glicerídeos/imunologia , Herpesvirus Humano 1/imunologia , Neutrófilos/imunologia , Vírus Sinciciais Respiratórios/imunologia , Staphylococcus aureus/imunologia , Anti-Infecciosos/imunologia , Ácido Araquidônico/farmacologia , Ácidos Araquidônicos/farmacologia , Linhagem Celular , Endocanabinoides/farmacologia , Glicerídeos/farmacologia , Humanos , Ativação de Neutrófilo/imunologia , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA